viernes, 17 de junio de 2011

MATERIAS ELABORADAS

¿cuuales son las materias elaboradas?

Se denominan recursos naturales a los elementos que el hombre encuentra en la Tierra y utiliza para satisfacer sus necesidades. Estos recursos son el agua, el aire, el suelo, la fauna y la flora que habitan la superficie terrestre y los minerales que se encuentran en el subsuelo.

Los recursos naturales pueden clasificarse en:

w Recursos inagotables: El agua y el aire son inagotables. La contaminación del agua y el aire afecta tanto al hombre como al resto de los seres vivos. Si se produce en forma indiscriminada y no controlada afectará la salud y, como estos elementos son necesarios para otros seres vivos, afectará la existencia y desarrollo de otros recursos.

w Recursos renovables: La fauna y la flora son renovables. A pesar de ello debe tenerse especial cuidado en la forma de utilizar estos elementos. De utilizar en forma indiscriminada la flora y la fauna, pueden extinguirse algunas especies si se la consume más rápidamente de lo que pueden reproducirse. Al extinguirse las especies o producirse una gran disminución de su población puede romperse el equilibrio ecológico.

w Recursos irrenovables: El gas, el petróleo y los metales son irrenovables. A pesar de utilizarlos racionalmente se agotarán.

Al tomar estos elementos, el hombre debe cuidar de no agotarlos ni provocar desequilibrios, ya que no sólo estará perjudicando a la naturaleza, sino que a la larga, se perjudica a sí mismo.





Actividades económicas

Los elementos que el hombre toma de la Tierra generalmente no son consumidos en forma directa. La mayoría de los mismos debe transportarse o transformarse para ponerlos al alcance del consumidor. Estas transformaciones se llaman proceso económico.

Los hombres que forman parte de la población económicamente activa, participan de este proceso económico en alguna de sus fases a través de su trabajo. La remuneración que reciben les permite consumir los bienes elaborados, alimentarse, vestirse y adquirir lo necesario para su bienestar

OBTENCIÓN O FABRICACIÓN DEL PLASTICO
La fabricación de los plásticos y sus manufacturados implica cuatro pasos básicos: obtención de las materias primas, síntesis del polímero básico, obtención del polímero como un producto utilizable industrialmente y moldeo o deformación del plástico hasta su forma definitiva.

Materias primas.
En un principio, la mayoría de los plásticos se fabricaban a partir de resinas de origen vegetal, como la celulosa (del algodón), el furfural (de la cáscara de la avena), aceites de semillas y derivados del almidón o del carbón. La caseína de la leche era uno de los materiales no vegetales utilizados. A pesar de que la producción del nailon se basaba originalmente en el carbón, el aire y el agua, y de que el nailon 11 se fabrica todavía con semillas de ricino, la mayoría de los plásticos se elaboran hoy con derivados del petróleo. Las materias primas derivadas del petróleo son tan baratas como abundantes. No obstante, dado que las existencias mundiales de petróleo tienen un límite, se están investigando otras fuentes de materias primas, como la gasificación del carbón.

Síntesis del polímero  El primer paso en la fabricación de un plástico es la polimerización. Como se comentaba anteriormente, los dos métodos básicos de polimerización son las reacciones de condensación y las de adición. Estos métodos pueden llevarse a cabo de varias maneras. En la polimerización en masa se polimeriza sólo el monómero, por lo general en una fase gaseosa o líquida, si bien se realizan también algunas polimerizaciones en estado sólido. Mediante la polimerización en disolución se forma una emulsión que se coagula seguidamente. En la polimerización por interfase los monómeros se disuelven en dos líquidos inmiscibles y la polimerización tiene lugar en la interfase entre los dos líquidos.
Aditivos.
Con frecuencia se utilizan aditivos químicos para conseguir una propiedad determinada. Por ejemplo, los antioxidantes protegen el polímero de degradaciones químicas causadas por el oxígeno o el ozono. De una forma parecida, los estabilizadores lo protegen de la intemperie. Los plastificantes producen un polímero más flexible, los lubricantes reducen la fricción y los pigmentos colorean los plásticos. Algunas sustancias ignífugas y antiestáticas se utilizan también como aditivos.
Muchos plásticos se fabrican en forma de material compuesto, lo que implica la adición de algún material de refuerzo (normalmente fibras de vidrio o de carbono) a la matriz de la resina plástica. Los materiales compuestos tienen la resistencia y la estabilidad de los metales, pero por lo general son más ligeros. Las espumas plásticas, compuestas de plástico y gas, proporcionan una masa de gran tamaño pero muy ligera.
Forma y acabado  

Forma y acabado
Las técnicas empleadas para conseguir la forma final y el acabado de los plásticos dependen de tres factores: tiempo, temperatura y deformación. La naturaleza de muchos de estos procesos es cíclica, si bien algunos pueden clasificarse como continuos o semicontinuos.
Una de las operaciones más comunes es la extrusión. Una máquina de extrusión consiste en un aparato que bombea el plástico a través de un molde con la forma deseada. Los productos extrusionados, como por ejemplo los tubos, tienen una sección con forma regular. La máquina de extrusión también realiza otras operaciones, como moldeo por soplado o moldeo por inyección.
Otros procesos utilizados son el moldeo por compresión, en el que la presión fuerza al plástico a adoptar una forma concreta, y el moldeo por transferencia, en el que un pistón introduce el plástico fundido a presión en un molde. El calandrado es otra técnica mediante la que se forman láminas de plástico. Algunos plásticos, y en particular los que tienen una elevada resistencia a la temperatura, requieren procesos de fabricación especiales. Por ejemplo, el politetrafluoretileno tiene una viscosidad de fundición tan alta que debe ser prensado para conseguir la forma deseada, y sinterizado, es decir, expuesto a temperaturas extremadamente altas que convierten el plástico en una masa cohesionada sin necesidad de fundirlo.
TIPOS DE PLÁSTICOS:


 1.  POLIETILENO:    
        Se le llama con las siglas PE. Existen fundamentalmente tres tipos de polietileno:
a)  PE de Alta Densidad:   Es un polímero obtenido del etileno en cadenas con moléculas bastantes juntas. Es un plástico incoloro, inodoro, no toxico, fuerte y resistente a golpes y productos químicos. Su temperatura de ablandamiento es de 120º C. Se utiliza para fabricar envases de distintos tipos de fontanería, tuberías flexibles, prendas textiles, contenedores de basura, papeles, etc... Todos ellos son productos de gran resistencia y no atacables por los agentes químicos.

            b) PE de Mediana Densidad:   Se emplea en la fabricación de tuberías subterráneas de gas natural los cuales son fáciles de identificar por su color amarillo.

            c) PE de Baja Densidad:    Es un polímero con cadenas de moléculas menos ligadas y más dispersas. Es un plástico incoloro, inodoro, no toxico, mas blando y flexible que el de alta densidad. Se ablanda a partir de los 85 ºC. Por tanto se necesita menos energía para destruir sus cadenas, por otro lado es menos resistente. Aunque en sus más valiosas propiedades se encuentran un buen aislante. Lo podemos encontrar bajo las formas de transparentes y opaco. Se utiliza para bolsas y sacos de los empleados en comercios y supermercados, tuberías flexibles, aislantes para conductores eléctricos (enchufes, conmutadores), juguetes, etc... que requieren flexibilidad.   
2. POLIPROPILENO:
        Se conoce con las siglas PP. Es un plástico muy duro y resistente. Es opaco y con gran resistencia al calor pues se ablanda a una temperatura mas elevada (150 ºC). Es muy resistente a los golpes aunque tiene poca densidad y se puede doblar muy fácilmente, resistiendo múltiples doblados por lo que es empleado como material de bisagras. También resiste muy bien los productos corrosivos. Se emplean en la fabricación de estuches, y tuberías para fluidos calientes, jeringuillas, carcasa de baterías de automóviles, electrodomésticos, muebles (sillas, mesas), juguetes, y envases. Otra de sus propiedades es la de formar hilos resistentes aptos para la fabricación de cuerdas, zafras, redes de pesca.

3. POLIESTIRENO:
          Se designa con las siglas PS. Es un plástico más frágil, que se puede colorear y tiene una buena resistencia mecánica, puesto que resiste muy bien los golpes. Sus formas de presentación más usuales son la laminar. Se  usa para fabricar envases, tapaderas de bisutería, componentes electrónicos y otros elementos que precisan una gran ligereza, muebles de jardín, mobiliario de terraza de bares, etc... La forma esponjosa también se llama PS expandido con el nombre POREXPAN o corcho blanco, que se utiliza para fabricar embalajes y envases de protección, así como en aislamientos térmicos y acústicos en paredes y techos. También se emplea en las instalaciones de calefacción
4. POLICLORURO DE VINILO:
          Se designa con las siglas PVC. El PVC es el material plástico más versátil, pues puede ser fabricado con muy  diversas características, añadiéndole aditivos que se las proporcionen. Es muy estable, duradero y resistente, pudiéndose hacer menos rígido y más elástico si se le añaden un aditivo más plastificante.
          Se ablanda y deforma a baja temperatura, teniendo una gran resistencia a los líquidos corrosivos, por lo que es utilizado para la construcción de depósitos y cañerías de desagüe.
          El PVC en su presentación más rígida se emplea para fabricar tuberías de agua, tubos aislantes y de protección, canalones, revestimientos exteriores, ventanas, puertas y escaparates, conducciones y cajas de instalaciones eléctricas.
         
5. LOS ACRÍLICOS:  
          En general se trata de polímetros en forma de gránulos preparados para ser sometidos a distintos procesos de fabricación. Uno de los mas conocidos es el polimetacrilato de metilo. Suele denominarse también con la abreviatura PMMA. Tiene buenas características mecánicas y de puede pulir con facilidad. Por esta razón se utiliza para fabricar objetos de decoración. También se emplean como sustitutivo del vidrio para construir vitrinas, dada su resistencia a los golpes.
          En su presentación traslucida o transparente se usa para fabricar letreros, paneles luminosos y gafas protectoras.
          Otras aplicaciones del metacrilato las encontramos en ventanas  de alion, piezas de óptica, accesorios de baño, o muebles. También es muy practico en la industria del automóvil. A partir del polvo plástico acrílico se fabrican aparatos sanitarios (bañeras, lavabos, fregaderos).
Antiguamente se designaba comercial de plexiglas. Pero uno de los principales inconvenientes de este utilísimo es su elevado precio.

6. LAS POLIAMIDAS:
          Se designan con las siglas PA. La poliamida mas conocida es el nylon. Puede presentarse de diferentes formas aunque los dos mas conocidos son la rígida y la fibra. Es duro y resiste tanto al rozamiento y al desgaste como a los agentes químicos.
          En su presentación rígida se utiliza para fabricar piezas de transmisión de movimientos tales como ruedas de todo tipo (convencionales, etc...), tornillos, piezas de maquinaria, piezas de electrodomésticos, herramientas y utensilios caseros, etc...
En su presentación como fibra, debido a su capacidad para formar hilos, se utiliza este plástico en la industria textil y en la cordelería para fabricar medias, cuerdas, tejidos y otros elementos flexibles.
La materia esta formada por moléculas que pueden ser de tamaño normal o moléculas gigantes llamadpolímeros.





Los polímeros se producen por la unión de cientos de miles de moléculas pequeñas denominadas monómeros que forman enormes cadenas de las formas más diversas. Algunas parecen fideos, otras tienen ramificaciones. algunas más se asemejan a las escaleras de mano y otras son como redes tridimensionales.
Existen polímeros naturales de gran significación comercial como el algodón, formado por fibras de celulosas. La celulosa se encuentra en la madera y en los tallos de muchas plantas, y se emplean para hacer telas y papel. La seda es otro polímero natural muy apreciado y es una poliamida semejante al nylon. La lana, proteína del pelo de las ovejas, es otro ejemplo. El hule de los árboles de hevea y de los arbustos de Guayule, son también polímeros naturales importantes.
Sin embargo, la mayor parte de los polímeros que usamos en nuestra vida diaria son materiales sintéticos con propiedades y aplicaciones variadas.
Lo que distingue a los polímeros de los materiales constituidos por moléculas de tamaño normal son sus propiedades mecánicas. En general, los polímeros tienen una excelente resistencia mecánica debido a que las grandes cadenas poliméricas se atraen. Las fuerzas de atracción intermoleculares dependen de la composición química del polímero y pueden ser de varias clases.
Principales Polímetros
Polietileno (PE)   
Las olefinas como el etileno, en estado gaseoso, tienen poca tendencia a polimerizar, pero las investigaciones de los ingleses Perrin y Swallow realizadas en 1931 en los laboratorios de la Imperial Chemical Industries, les permitieron observar que el etileno sometido a temperaturas de unos 170 º centígrados y 1.400 atmósferas  de presión, se transformaba en polímeros de etileno con el aspecto de polvillo blanco . 
Este plástico tenía una gran flexibilidad, y una extraordinaria resistencia química y dieléctrica, lo que le hacía muy adecuado para el aislamiento de cables . 
El alemán Ziegler, del instituto de Investigación del Carbón, de Mülheim/Ruhr , basándose en los trabajos iniciados por el italiano Natta , consiguió la polimerización de etileno a presión atmosférica y a temperaturas inferiores a 70 ºC . Pero las propiedades de este plástico eran muy diferentes a las del obtenido por Perrin y Swallow . 
Ello era debido a que el primero tenía una estructura muy ramificada ( amorfa ) y el segundo tenía estructura lineal ( de tipo cristalino ) La primera consecuencia era que la densidad del primero comprendida entre 0' 91-0,93 era más baja que la del último que estaba entre 0,94 y 0´96 . 
Internacionalmente se denominan Baja Densidad Polietileno , los ramificados , y Alta Densidad Polietileno los de cadena lineal o estructura cristalina . 
Todos estos materiales tienen una gran resistencia a los productos químicos , ácidos , bases, aceites, grasas, disolventes... Sin embargo, su resistencia es moderada para los hidrocarburos normales. 
El PEBD , polietileno de baja densidad , o LDPE (low density polietylene) , como se conoce internacionalmente , se utiliza para  fabricar bolsas flexibles , embalajes industriales, techos de invernaderos agrícolas, etc. 
También gracias a su resistencia dieléctrica se utilizan para aislante de cables eléctricos . 
El PEAD , polietileno de alta densidad , o HDPE (High density polyetilene) , se utiliza también para bolsas ( grandes almacenes , mercados ...) también gracias a su resistencia al impacto se utiliza para cajas de botellas , de frutas , pescado ..Tuberías , juguetes, cascos de seguridad laboral . 
Gracias a su estructura lineal sirve para cuerdas y redes ( estacas de barcos y redes de pesca), lonas para hamacas. La resistencia térmica permite usarlo para envases que deban ser esterilizados en autoclave ( leche , sueros ...) 
Debido a su gran facilidad de extrusión para filmes, los polietilenos son muy utilizados para recubrimientos de otros materiales, papel, cartón, aluminio...y para embalajes  ( fundas de plástico) 
Poliamida (PA)
En 1930 Carothers y J.Hill trabajando en los laboratorios de la empresa química Du Pont de Nemours descubrieron un polímero con el que se podían hacer hebras de gran resistencia , era la primera poliamida 6,6, que se comercializó diez años más tarde con el nombre de Nylon . 
En 1938 Schlack en los laboratorios de la empresa alemana Farbenindustrie conseguía la polimerización de la PA 6, que se comercializó con el nombre de marca Perlon. 
Las poliamidas se consiguen por la poliadición de un producto (PA 6), o la policondensación de dos productos distintos(PA6,6). El número se refiere al número de átomos de carbono de que se compone la molécula básica de la cadena. 
La PA 6 es la policaprolactama, la caprolactama tiene 6 carbonos. Y la PA 6,6 es la obtenida por la policondensación de la hexametilendiamina ( 6 átomos de carbono ) y el acido adípico ( 6 átomos de carbono ) 

No hay comentarios:

Publicar un comentario